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1. Introduction.

Our primary concern is the comparison of two treatments in a

clinical setting, although our results are quite general and this problem

is only one application. To fix the discussion, in our major example we

assume that patients are recruited sequentially and assigned at random

into one of the two groups. Important covariable information is recorded

at the time of recruitment. The response variable is numerical (e.g.,

systolic blood pressure, cholesterol level) and is observed either

instantaneously or at a fixed time (from recruitment) in the future. We

assume that there is either a maximum sample size or a target sample size

N (see Section 3).

* In most experiments of this type, the investigator will want to

study the data periodically or as it is collected and (for ethical

reasons if no other) stop if obvious differences are observed. In this

instance a sequential analysis is called for, possibly based on repeated

significance testing (RST) (see for example Siegmund (1977, 1979)). The

usual methods for such tests would be based on least squares estimates

and F-tests for a linear model. Such an analysis has two potentially

serious difficulties:

(i) if there are outliers or if the error distribution is

heavier-tailed than the normal distribution, the estimates

will be inefficient and the tests will have low power;

(ii) particular design points (which may be "outliers in the

*. design") can be extremely influential, even though the

observed response is not an outlier; this could cause

difficulties in interpretation at the very least.
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To overcome the first problem, Huber (1977) and others have

suggested the "classical" M-estimates, which give bounded influence to

outliers in the response but unfortunately give unbounded influence

to outliers in the design. Recently, there have been a number of

proposals to handle problems (i) and (ii) jointly (Maronna and Yohai (1978));

these are the "bounded influence regression" estimates (BIR).

Our model takes the general form

(1.1) Yi = si O + YoZi (i ,2,...)

where the {zi } are i.i.d. with distribution function symmetric about

zero. The parameter y0 is a scale factor to be explicitly defined

later. For our purposes it is convenient and not unrealistic to assume

that the design vectors (c iI are also i.i.d. and independent of the

errors; modifications of this assumption are discussed in Section 5.

In the two-sample problem, we will write W = (a , a ), where u is the

intercept and a is the treatment effect. An individual design point will

take the form (1 ±1 c), where the sign is determined by the treatment

jgroup.

All the estimates mentioned so far can be generated in the following

manner. Let (S n(pxp) , Yn ) be estimates of scale which converge to

(SoY 0); particular choices of yn are "Proposal 2" (Huber (1977)) or
A

"MAD" (Andrews et al. (1972)). Define A as the solution to
-n

n
(1.2) 0 = 1 ig 1(Ic.Sn c ) g2  _c i ncjiIil _- -i )
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Particular choices of g1' g2, and 0 give important special cases, e.g.,

.ea:.t Squares g1 (x) = g2 (x) = I , O(x) = x

Classical M gl(x) = g2 (x) = 1 , 4(x) bounded

BIR jxgl(x)j bounded , t(x) bounded

Special cases of BIR estimates which are particularly noteworthy include:

Mallows (unpublished)
and g2(x) = 1, Sn = I

Maronna and Yohai (1978) 1

Schweppe (unpublished) gl(x)g2(x) = 1 , Sn = I

Hampel and Krasker g( W = 1 , g1(x) = 1/x
(unpublished) 2

In Section 2 we state the major weak convergence results, apply them

to the two-sample problem in Section 3, and prove them in Section 4.

Extensions are discussed in Section S.

2. Major convergence results.

* Except where noted, we discuss only the special case that Sn  S

(and we take S = I with no loss). Our two results depend on whether or

not is monotone. If so, our technique is based on Yohai and Maronna

(1979), while if not it is based on Carroll (1978). Since there are two

results, we have chosen to list groups of possible assumptions.

In the applications we are going to assume that if N is the maximum

sample size, then one takes at least KN observations before stopping,

) where KN - c, KN/N -p 0. We make use of this convention in this

section. The proofs and assumptions can be modified to the case

KN * constant, but at a cost of notational complication.



5

Define the process {GNC.)l by

(2.1) GN (S) - 0 0 < s < KN/N

= [s(A (y -i KIN ss 51.[Ns]( 8 [Ns- B0)(Y N N <

Theorem 1. Asswne Al-A7 and Bl-Bs beZow. Then

(2.2) sup [Ns]N- JElGN(s) N- [N ] ci gl(ci)*(g 2 (ci)z i) P 0
0<s:l i=l

Theorem 2. Asewne Al-A7, B4 and Cl-CS. Then

(2.3) sup N -  c i gC )1Pg 2 (c )z.)I +N 0

0:5s:51 1i=l

I

Clearly, Theorem 1 gives a weak convergence result for the process

[Ns]GN(s)/N in D P[0,1], while Theorem 2 considers the more interesting

process GN(s). In the next section these results and their applications

are discussed.

Let (c, z) be distributed as (clz).

j Al. i is bounded, odd, absolutely continuous, and Lipschitz of order

one.

A2. jcigl(c) s M0, gl(c) > 0 almost surely.

A3. E cIig 2 (c) 5 M0 , g2 (c) a 1 almost surely.

- -F.
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A4. There exists A0 > 0 such that for every Iti < A0,

sup h-2 E[l(1+q+h)g 2 C(c)(z-ct)) - ((l+q)g 2 (c) (z-ct)) ] 2 < 00

Iql, jh jI5A0

AS. Z1 = Ec' cgl(cDg2(cW (g2(cz ) is of full rank, and as -l 0,

r 4+ 0,

IEc' gl(c)(Cg 2 (c)l)l+r)(z-ct)) + Zl j = o(ItI+IrI)

A6. E2 = Ec' c{g 1 (C) p(g 2(c)z)) 2 is of full rank.

2 - is
A7. i. su ___1+q 0

A7 lra sup E[c q)g 2 (c)(z-ct)) - (g 2 (c)z)]

(This actually follows from Al- A4, but it is convenient to state it

separately.)

BI. 41 is monotone nondecreasing and nonconstant, and if D(u,z) =

(iP(u+z)-(u))/z, then IuI:a, IzI!b imply D(u,z) a d > 0.

B2. P{ I z el£ > 0 for all e > 0.

B3. The minimal eigenvalue X min of the matrix

~~~~~Eg 1, _ g C ) _ (_~ ~c):5 a, g IS_1:_ b}"I E(c0g 2(c)S' cI{g2() a,92 Wc cj

is positive.

B4. sup{([Ns]lIY[Ns - Y0IN'h. 0 < s < 11 = 0 p(1)
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B5. For every E > 0, there exists Q,N1 such that N N1 implies

I-

P{Q- Yn : Q for all KN  n !5 N} 1!N

Cl. In addition to Al, 0 has two bounded continuous derivatives except

on a finite set 5.

C2. 4 is constant outside an interval.

C3. The distribution function of g2 (c)z is continuous at all b E B.

C4. For every c > 0 as N oo,

A
P{lsn - a01 > e for some KN : n ! NJ 0

CS. For every e > 0 as N+ ,

P{Iy n - Y0 > E for some K N s n - N4 0.

.1

Remark 2.1. Al holds for the common M-estimators. BI

is as in Yohai and Maronna (1979), while C1-C3 are needed by Carroll

4(1978).

Remark 2.2. A2-A3 are not unusual for BIR estimates. A4, AS, and A7 are

smoothness conditions corresponding to those of Bickel (1975).11
Remark 2.3. When is monotone, B2-BS are specially adapted versions of

assumptions in Yohai-Maronna. In an unpublished manuscript, they have

also shown C4-C5 when 92(-D 1, 4'is monotone, and scale is estimated

by Proposal 2.
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3. Two-sample problem.

For the two-sample problem, the treatment effect is a' 0 a

where a' = (0 1 0...0). We consider the situation in which we are

allowed to take at most N observations and let the process start by

taking at least KN observations. The usual RST methodology for testing

HO: a = 0 vs. HI: s 0 follows this form: for each KN ! n ! N, one

computes the usual F- or t-statistic based on n observations and compares

it to a cutoff point (possibly depending on n,N). H1 is chosen and

experimentation stopped if for any KN ! n < N the test statistic is

"large"; at the final observation (n = N), a new cutoff point is defined.

Note that in the previous section we have shown that if W is

Brownian motion,

[NsIN- 1 a' G ( a'_ s2 Z 1 Ia) -  => sW(s)

where ">" denotes weak convergence in D[O,1]. Let {CN()l be a

sequence of nonnegative functions in D[0,1] converging (uniformly) to a

continuous function C(.) and let D be a positive number. If y0, EI'

and E2 were all known, then a general class of RST's which fits into

the framework outlined above would take the following form:

Take an initial sample of KN observations. Reject H0
in favor of H1 if either of the following obtains:

(i) [Ns]N [Ns]l > CN(s)A, for some KN/N ! S s 1;

't(i i) N '  N I > DA%

(where A® oy0 a' aZ
2
I ).

The constant A can be estimated, One reasonable estimate is

4= .
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-11S -1
N(s) = [Ns] a' (s) - 1 Ns)

where

(3.1) EI(S) [Ns] [N c ( c--N I- gl(-i)92 (ci)

A

and 
(g2(c i) (yi- c-i - [Ns])/Y [Ns )

-i---[Ns
and

(3.2) Z 2N(s )  [Ns] -  c i ci(gl(cidi=l

^A 2
(g2 (c1) (Yi- S1[Nsl)/Y[Ns])

The procedure we propose is the same as above but with AN(S)

replacing A.,. Before analyzing the power of this test, we need the

following:

Lemma 3.1. Under the asswnptions of Theorem 1, C4 holds if we also assume

that for all L > 0, a > 0 and 18 = 1,

(3.3) Eg1 ( cD (S.D (og 2 C) Cz-Lc 2)) < 0

(We will analyze the power of these tests for contiguous alternatives soifthe term W$ below will depend upon N, though this will not be explicit

in the notation.)

Theorem 3. Suppose that Nh a' 8n n (finite), that C4 and CS hold, and

that either (2.2) or (2.3) hoZds. Suppose fUrther that satiefies Al-A7

and

L I° _
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(3.4) lir Elclg 2 (c) sup bP'(g 2 (c)(l+r)(z-ct)) - 2Cc)zI = 0

E-0-r- Ir-< , ItI<..

Then the power of the RST converges to

(3.5) P{IW(s) + sn ,j > C(s) for some 0 : s : 1 or JW(1) + nI > D}

2 -1 - 1where n. = T (y at 2E1 a) 2 .

Remark 3.1. The quantity (3.5) can be computed from Anderson (1960). In

comparing different tests, the relevant quantity is

2a' E- 1 1 a-
0 - 1 2 1

Remark 3.2. Siegmund (1979) has considered RST's with (essentially)

CN(s) = (2[Ns]2 N-1 (exp(a/[Ns])-l))

and has derived approximations in the normal case which are better than

*(3.S).

Remark 3.3. The approximations (2.2) and (2.3) can be used to construct

analogues to classical F-tests (see Schrader and Hettmansperger (1980)

for another approach). One could test HO: K' _ = 0 by rejecting for

large values of

N [a!'(K_[Nsl) [K'(E-IN(S)- E.2N(F 1N )-lK]-I K' E[s



4. Proofs.

The proofs of Theorems 1-3 are broken into a number of steps. In
-1

Lemmas 4.1-4.4 we make the assumptions of Theorem 
1. Also define y = a

and Yn = n.

Lemma 4.1. Define i(r) = c .g(ci(g2(ci)zil+r)). Then the process
. -ili i)(2-i

[Ns]
HN(rs) = N [ i(r

i=l

on D{[-A 0,Ao] x [0,I]} converges weakly to a Gaussian process which is

almost surely continuous.

Proof. The finite dimensional distributions converge by Al and A2. By

Al, A2, A4 and the remark following Theorem 3 of Bickel and Wichura

(1971, p. 1665), HN is tight (in the notation of their equation (3),

yl=Y 2=2 , a1=62=1). Define the continuous process

Hi(r,s) = HN(r,s) + (Ns-[Ns]) s (r)N-
[Ns]+1

= HN(r,s) + o (1)
p

uniformly in (r,s), from which the lemma follows. 0

Lemma 4.2. Define

-3/2 [Ns] 1/2 1/2
V:(rst) = [Ns]N c(C [Ns])(l+rN /[Ns]))

t " VN(r,s,t) = V*(r,s,t) - V*(O,s,O) - EV*(r,s,t)

Then for all e>O, M>O there exists B = B(c,M) such that
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P{IVN(r,s,t)I > e for some IrI!_M, Itl M, BN- <s<5} < C

Proof. Fix e>O, M>0. For any B>O , 6>0, A2-A3 and the fact that P is

Lipschitz show

sup{IVN(r,s,t) - VN(r,s,0)I- BN- 2 s-! 6, Irj- M, It1M} = 0 (6)N N p

From Lemma 4.1 we can choose B large and 6 small so that

P{UsupIVN(r,s,O)I : BNO <s!-6, IrI- m} > E} < E/2

Hence it suffices to prove the lemma when 6 : s ! 1 for arbitrary 6;

since M is arbitrary we need only prove the lemma for the process

generated by

[Ns]
V*(r,s,t) ; N0 igl(c i(g2 (c i)(z ' -c -it  )(l+rN))

With this new process VN we need only prove tightness since (A2 and A)

Var(V*(r,s,t)) - 0. For any t, by Al-A3
IN

sup{IV*(r,s,t) - V*(r,st.)I: 0sgl , Irj-<M, It-t_0n = p(a)N N p

This means we need only prove tightness of V which follows from

A4 as in the proof of Lemma 4.1. 0

Lemma 4.3. For every M > 0

sup{n2 Ijn IN3 2  KN nNt 1/2  0 p

-!0
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Proof. Fix E,M > 0. From B3,

sup{P(Iceo=o): 101 ii < 1

so that for every D > 0 there exists n(D) with

(4.1) sup{P(o<Icit<n(D)): lt0 = l} < D/2

Choose Q > 1 to satisfy the inequality of B5 and P(jzl>Q) < C. Define

n

R n(63.L) = n- g, (c )c(cgn(_,) =n -  lCi) Cci0_) (g2c i) (z i  L ci0_a n )

i=2

As in the proof of Theorem 2.2 of Yohai and Maronna (1979), n2lk IN-3 2 > C

for some K N : n S MNh implies an > jN/M2 so that Rn(0, £N/M 2 ) > 0

for some 1O1 = 1. Since P is monotone and skew symmetric, with

probability at least 1-2E by B5,

2 n

R (0, £N /M2) = n-  [ gI(c_) e~*0_ g2( ) s

.i n

:<n 1 g(ci) Oci(Og 2 ( I )(ziI- £N Ici_M-2 ))gl (cd--in9 (

4 n

:< M0 supIln
- I  I i{Izil > Q1

n glCc_.) Ici .(Q 2 g2 (c i)(l-£N Ic_i0I/M 2 Q3 ))
iul

• I{lzil S Q

=R + Rn2

By the strong law of large numbers (SLLN),



14

lim supR 5C up (a.s.)

Since P is monotone, applying Lemma I of Yohai (1974) shows that for every

L > I (since N /QM 2 o)

(4.2) lim sup{Rn2: 11 = 1, K_ 5 n 5 N)

SSup Eg1 (c) c8 (g2 (c)Q2 ( 1 - LIc Lt))P(IzI s Q) (a.s.)

Since P is monotone nondecreasing and nonconstant, lim inf P(x) < 0.
x -* -00

Therefore from (4.1), gl(c) > 0, (A2), dominated convergence, and Fatou's

Lemma, one can choose L and Q sufficiently large so that the right side of

(4.2) is at most A < 0 and A is independent of E. One completes the

proof by choosing e. sufficiently small.

Lemma 4.4. For every E > 0 there exists M=M(e)>O, L(c) such that for

N sufficiently large

P{nI~ N' > L for some MN < n < N} < 4 c

Proof. Choose Q as in B5 and define

i l~c)c2)(2c)z-~-t'

Let L = M/Q. As in Theorem 2.2 of Yohai and Maronna (1979),

n n > L implies RN(R_, LN /n, n) > 0 for some 1 - 1. When

Q-I o s Q (with probability at least l-c from BS) uniformly in

SliI = 1, then by Bl,
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RN( hLN /n ,n) :5 A,(n,N,0) - A2 (n, .)

(- (i e(g2 (c izion)

- 2 --in 2dMQ n g1 (ci)g2(ci)(c1 0), i=1

I{{zi :5 Q-}I{g2 (ci)5a, g2(c)Ic 15-b}

By the SLLN and B3,

lir sup A2 (n,8_) > dMX min P{{ < Q-I} (a.s.)

Therefore, it suffices to show that

SUP A(n,N,O)l 0 (1)j~el=i 1a  0p~

NISn N

for some M.

We have for 101 = 1 and MN < n 5 N

n
JA 1(n, N,e) I S sup IN- I g1(c1)c1 OU~2 (c i)z io n)I

MN :5n:5N i

Assume M > 1. Then from B4 there exists M, independent of M (we may

take M, < M) so that

P{sup{[Ns]IY[Ns] " YoN": 0 s 1} > M.} < E

Hence
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Pisup{ny y 0  5N n N) >M* < C

or

P{suP{Iyn YOI: MO :5 n :5 NI S M Nh n I a 1-E

Therefore for M sufficiently large

PspJn - Y0 1: 4N1 < n :5 NI ! Y y0/2} a c

hence for some M* not depending on M

P{Ia - Go ! M** for all MN1 5 n S NI at 1

Thus, since aO 1,

jsup IjA (n, N, 0) 1 : sup IN- N],~r r 1  ' J
0_ OS51 Ii=l

MN !gnSN

by Lemma 4.1.0

Proof of Theorem 1. Fix c > 0 and 6 > 0. Then Lemma 4.4 shows

that when the sup in (2.2) is taken over KN/N :5 s !5 6 , (2.2) is 0 p 6.

Since 6 is arbitrary, it suffices to prove (2.2) when the sup is taken

over a s s 5 1 for any a > 0. In Lemma 4.2 set

j = [s(r~~oNr-[Nsj a[Ns]la0- 1)Ntf , both of which are 0Op(1)

(by Lemma 4.4 and B4). Then use AS; since as si , the proof is

complete.0
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Lemma 4.5. Assume AI-A7 and Cl-CS. There is a function h(x) 0 as

x - 0 for which the following obtains: for every e > 0 sufficiently

small, almost mrely as n + and uniformly in 10-001:5, j8-8_O1Ie

(4.3) in-  c gi { - t(g 2 (ci)z i )

Sig2 (c i)i'(g_2(i)zi ) (B -a0
)

- g2(ci)z i '(g 2 (c_i)zi)(-OaO)}l

-h~C ) COa- aol + Ig- _o1) •

Proof. Set a0=1, ao=O without loss. Define

d M 2 = 2 + max{IKI , KcB}

d d(e) = (2M 2 E 
-

A () = fjcfg 2 () > d(e)

8Lco, _) = {Ig 2(c)a~z-c8 - KI > 2ed(e) for all Kc8} .

Using C2 choose a > 1 such that is constant on (-o%-a] and

constant on [a,-). Choose c is so small that

2a/(l+e) - £d(c)/(l-e) z a

and

20a£ + Ed(e)(1+c) < 2ed ()

Now suppose that Ia - I 5 C, kl 5 c, ezc) c L(C,a,_) and

c 0 A(c). Then if g2(c)z z 2a, it follows that

. ... .. ... .. ... . .. . . . . " -. . ..... .. . . ". = 7 - -. -" . ."."
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92 (c)az 2a1(l+c) 2t a

and

g 2(c)a(z - c 2ct/(l+E) - 'g 2 (c)c_02t(- 0) '

so that ig(cazc))=Pg(c);similarly g(c)z :5 -2a implies

that '(92 (c) C(z -c_) i(g 2 (D )) If lg2 (c)zI < 2a, then

1g2 ()(z-a(z-cO))1 :5 lg 2(c)z(0-1)1 + 1 g 2 (C) COI

:s 2ctc + ed(c)(l+E) s 2ed(c)

so that g2(c)z is in the same interval between points of 5 as is

92 (c) c(z -c a), so that we may use a Taylor expansion to bound the

summands in (4.3).

If jo - 11 > F-, 1.01 > E:, (z,c) J L(e,ci,a), or c E A(e), then we can

use the fact that 'P is Lipschitz and constant on (ct]and on [a,-)

to bound the summands. This suggests that we can bound (4.3) by

C {A + An + An +A }, where C0 depends only on * and
0 nl 2 n n40

n2
A nl n I {g2(c.i)(lo- 11+ Ic_*il0) (i{i.1g2(c_) :Sd e

An2 I n 1 
2 (-Ci)(IJo-l 11 +Jc_.JJ0)I{(zict) i LV,a,0)}

An3  n i 1 g2 (-ci)(IaY-11 +e lcSiIkl)I{ 1 ig2(-C1)

AnM 1*1 ~ V(g2(E.i~o(zj-i)) - (2S i)'{Eig2i
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We must prove the bound of the lemma for each term. This is easy to do

for AnI and An3 by applying the SLLN and using A3. For An4, since * is

Lipschitz and A3 holds, we need only prove the lemma when 8 = 0. Since

is constant off a compact set, there is a constant M1 with

n
An4 (6=O) ! - lln-  fl a d ( )}' _M - E=[ 92(i) IziII{[ci~g2(ci)da , 2(ci) Izi l_< I }

so from A3 the lemma holds for An4' Finally, for some constant M2 ,

n
An2 - (al - 11 + I)n -  g2 (ci)ciI{!g 2 ()zi - KI - M2 ed(E)n2 ~~~~i=l 9 )I 9 ci iM

for some KeB) ,

so that A3, C3 and the SLLN and dominated convergence complete the

proof. f]

Proof of Theorem 2. Fix el, C2 > 0. Using the fact that E1 is of full

rank, and applying Al, A2, B4, C4, CS and Lemma 4.5, we see there exists

MI, M2 such that N ? MI implies

(4.4) P{In - 80 1 + 'on - O > el for some K ! n < N1 £1

N - 1  -Ci gl( i)*(g2 (ci)zi ) i }

i > 1

> M2 for some K.N s n s N} C2
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(4.6) PI Z- n' L -LD )9(di

+ cYC (

9 g(c )z '(g()z(OI > 4h(s_1)(Ia-I+ .EI-. Oj)

for some K~ N n !5 N and some I G- 0 1:5C t.-E.§.Ic !5EI}5E

Choosing An = , a=a we see that if N M the probability that the

following event obtains for all K N : n igN is at least 12c1+

AA1

(47)- 10 ! 4h(E1)ntIn - 000 +24
(47) n'n n ~I ~ o 2

For (4.7) to occur we must have (for E: small) nI9 n 00 JN h s 4M 2,

proving thatA 0 N N

(4.8) supin 10 - ON_:K N 5n!5N} = O(l)

Placing n (B - 0) into (.)with 00n' . ~ completes the proof. D

j Proof of Lemma 3.1. This follows by applying the technique of Lemma 4.3,

B5, Lemma I of Yohai (1974), and (3.3).0

Remark. Al, A3, and Bl-B2 imply (3.4) by dominated convergence.

Proof of Theorem 3. We will first show that for j =1,2

.. (4.9) 5up{ZJN (S) - 1: KN/Ngs~g1) 0
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First consider j = 1. From A2, C4 and C5, with probability at least

I - E/2,

14[Ns] -0)-12N(S) [Ns]"

(4.10) ( - Ns] cg1I  (ci) 2 (ci)'(g2 ( c i)zi)l
i=1

[ Ns][Ns].l [1 s c-l2(-ci)

i=l1

sup I ' (92 (ci) (1l+r) (zi- i  --t))

- P'(g 2 (ci)zi ) I

One applies (3.4) and the SLLN to prove (4.9); a similar proof using A7

and Lemma 1 of Yohai handles j 2. Since E1 and Z2 are of full rank,

the power becomes

P{(Ns]2N I/2' > [Ns]N -1 AN(s)CN(s)

for some KN/N -< s < 1 or N A > AN(1)D}

from which (3.5) follows by Theorem 1. 0

5. Extensions.

(a) It is possible to extend the results to classical M-estimators.

In Theorem 2 we need Elci < . For Theorem 1, A4 and A7 must be

modified so that Lemma 4.1 holds.

(b) We have dealt with the case in which the design vectors (c i}

are i.i.d., both because it is often reasonable and because it simplifies

the exposition. If these vectors are (i) constants or (ii) generated in

Section 3 by blocking on each group of two patients, it is still possible
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to apply our techniques. Detailed and reasonably simple conditions can

be worked out, both because of the nature of BIR estimates and because

our results depend in large part on easily generalized standard SLLN and

weak convergence techniques. The major difficulties lie in (4.1) and

(4.2) and the terms An3,An4 in Lemma 4.5.

(c) It is possible but extremely messy to extend the results to

estimating S0 by Sn .

(d) In Lemma 4.5, the major use of symmetry is that it assures

Ecg 1(c)g2(c)zp'(g2(c)z) = 0. For Section 3, the symmetry is unnecessary

if gj(c) = gj(IcI) (j = 1,2) and the patients are randomly (with

probability ) assigned to each group, for then

Ea' cgl(c)g 2(c)z9'(g 2(c)z) = 0

(e) The approximation (2.3), while only of first order, can in fixed

sample problems give some information about the dependence of the design

on the rate of convergence through Berry-Esseen results for

i N Y0 N -1  C , g(
1 N 1 c i g1(c.i)(g 2 (ci)zi)

! i=l1

Since the {c are i.i.d., when y0 is estimated in an appropriately

smooth fashion simultaneously with B (as in Huber's Proposal 2), the BIR

estimates are minimum contrast estimates of a vector parameter. If j has

a derivative then Berry-Esseen results and Edgeworth expansions are

available (e.g., Pfanzagl (1973) and Bhattacharya and Ghosh (1978)). For

the Huber function i(x) = max(-b, min(x,b)) when the design is bounded,

it should be possible to prove a version of (3.8) in Bickel (1974) and

obtain an Edgeworth expansion. (In the location case with scale not

estimated, Jureckovi (unpublished) has verified Bickel's (3.8).)
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